Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(9): 13512-13522, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253831

RESUMO

Microplastics (MPs) have been observed in the oceans, fresh waters, karstic water and remote water bodies. However, little is known on groundwater contamination, which is a natural resource of utmost importance for millions of people and is often perceived as a reliable source of water. Moreover, nanofiltration is perceived as a reliable technology to remove contaminants from water. In this study, large sample volumes of a silty-sandy gravel aquifer and the corresponding nanofiltered water were analysed for the presence of MPs (> 20 µm) using Fourier transform infrared (FTIR) microscopy. Concentration in ground water was 8 ± 7 MPs/m3 and increased to 36 ± 11 MPs/m3 in nanofiltered water. All MPs had a maximum Ferret diameter lower than 500 µm. Size distribution of MPs was towards the small size class (20-50 µm). In groundwater, 33% of MPs were detected in the smallest size class (20-50 µm) and 67% in the 50-100-µm-size class. In comparison, around 52% of MPs in nanofiltered water were observed in the 20-50 µm size class. Moreover, 33% of the MPs observed in nanofiltered water were in the 50-100 µm size class and 15% in the 100-500-µm-size class. From a chemical point of view, different plastic polymers were identified in groundwater and in nanofiltered water, such as polypropylene (PP), polyvinyl chloride (PVC), ethylene (vinyl acetate) copolymer (EVA), polyethylene (PE), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and other polymer materials (such as polystyrene-based copolymers, vinyl-based copolymers). Fibres were observed in all samples, but only a small number of fibres (near 1%) were identified as PP synthetic fibres in nanofiltered water. Furthermore, no clear difference of fibre concentrations was observed between groundwater (232 ± 127 fibres/m3) and nanofiltered water (247 ± 118 fibres/m3). Groundwater had extremely low levels of microplastics, and although the nanofiltration effectively removes suspended particulate matter, it slightly contaminates the filtered water with MPs.


Assuntos
Água Subterrânea , Polivinil , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Plásticos , Suíça , Furões , Água , Polietileno , Polímeros , Monitoramento Ambiental
2.
Sci Total Environ ; 880: 163270, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023809

RESUMO

Although it is known that freshwater resources are contaminated with microplastics (MPs), still limited information is known about the efficiency of large drinking water treatment plants (DWTP) to remove microplastics. Moreover, reported concentrations of MPs in drinking water variates from some units to thousands of units per litre and the sampling volumes used for MPs analysis are generally heterogeneous and limited. The present study evaluates the removal of MPs and synthetic fibres in the main DWTP of Geneva, Switzerland, by considering large sampling volumes at different time intervals. Furthermore, contrary to other studies, this DWTP does not count with a clarification process before sand filtration and coagulated water is sent directly to sand filtration. In this study a distinction is made between microplastics as fragments, films, pellets, and synthetic fibres. Raw water and effluents of each filtering mass (sand and activated carbon filtration) are analysed for the presence of MPs and synthetic fibres with sizes ≥63 µm using infrared spectroscopy. Concentrations of MPs in raw water range from 25.7 to 55.6 MPs/m3 and in treated water from 0 to 4 MPs/m3, respectively. Results show that 70 % of MPs are retained during sand filtration and total removal is equal to 97 % in treated water after activated carbon filtration. Concentration of identified synthetic fibres is low (average value of 2 synthetic fibres/m3) and constant in all steps of water treatment. Chemical composition of microplastics and synthetic fibres is found more heterogeneous in raw water than after sand filtration and activated carbon filtration, indicating the persistence of some types of plastics (like polyethylene and polyethylene terephthalate) in water treatment processes. Heterogeneities in MP concentrations are observed from one sampling campaign to another, indicating significant variations of MP concentrations in raw water.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Microplásticos , Plásticos/análise , Água Potável/análise , Suíça , Areia , Carvão Vegetal/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...